KNOW MORE IN A DASH: dashDB
Easy Webscale Data Warehousing in the Cloud

Sam Lightstone, IBM Canada | email: light@ca.ibm

Visit: http://dashDB.com

RESEARCH TOPICS:
• Speed is king! Fastest possible query times
• Structured data and NoSQL as data sources
• Make data warehousing simple
• Support many SQL and stored proc. dialects (Oracle, PostgreSQL, DB2, Netezza etc)

STATE of the ART (i.e. elsewhere)
• No dual SQL and JSON
• No true load-and-go simplicity
• No in-database analytics on cloud
• No polyglot cloud warehouses

ARCHITECTURAL FOUNDATIONS

In-database analytics
• Built in R, predictive and spatial analytics services
• Run within the memory space of the database
• Convert some algorithms to SQL and harness the scale of the query engine
• Provides 4-40X speedup over outside database analytics
• Memory limited by database memory, not the analytic engine

Elastic & Webscale
• Megabytes to Petabytes
• Elastic growth with hash partitioned shared nothing architecture
• MPP cluster can expand to 8X without rehashing data via initial over partitioning (Combined SMP and MPP parallelism exploited to ensure all cores leveraged)
• In-progress:
 • Scale to 10 P8
 • Load from on-premises at Terabyte-scale (e.g. 11B/hr)

SELECTED PAPERS:
5. Eva Kwan. et al. Automatic Database Configuration for DB2 Universal Database: Compressing Years of Performance Expertise into Seconds of Execution. SOTA 2013: 622-629

RECENT & ONGOING RESEARCH AREAS

SQL and NoSQL Integrated
• Automatic schema discovery from JSON (see VLDB paper)
• Seamlessly integrated with Cloudant.com NoSQL
 • Pushbutton creation of data warehouse for JSON with continuous synchronizaton
• In-progress:
 • Schema discovery is slow. Improve by creating an index for real-time schema metadata discovery

Load-and-Go Simplicity
• No tuning
• Automatic detect RAM, cores
• Apply heuristics to memory configuration, process model, database statistics etc.
• Admission control ensures manageable number of active queries do not over-consume resources
• Cloud provider manages everything other than table creation, data load, and user access control

Fast In-memory Columnar
• Leverages IBM’s BLU Acceleration columnar query engine
 • Operations on compressed data
 • Parallel vector processing
 • In-memory optimized, with L3 & L2 cache optimized architecture, operates on strides of data.
• In progress:
 • 3X better performance through: a. Partitioned grouping. b. Reduced join overhead (see VLDB paper). c. New sort and OLAP implementation

Polyglot SQL
• Provides SQL and stored proc. language compatibility with many variants
• Reduction of SQL to common representation through query graph modeling
 • Oracle
 • PostgreSQL
 • DB2 for LUW
 • DB2 for z/OS
 • Netezza
• In-progress
 • Netezza PL/SQL

ENGINEERING TOPICS:
• Webscale – megabytes to petabytes
• Bring spatial and statistical analytics to the data

ARCHITECTURAL FOUNDATIONS

In-database analytics
• Built in R, predictive and spatial analytics services
• Run within the memory space of the database
• Convert some algorithms to SQL and harness the scale of the query engine
• Provides 4-40X speedup over outside database analytics
• Memory limited by database memory, not the analytic engine

Elastic & Webscale
• Megabytes to Petabytes
• Elastic growth with hash partitioned shared nothing architecture
• MPP cluster can expand to 8X without rehashing data via initial over partitioning (Combined SMP and MPP parallelism exploited to ensure all cores leveraged)
• In-progress:
 • Scale to 10 P8
 • Load from on-premises at Terabyte-scale (e.g. 11B/hr)