
Reducing Replication Bandwidth for Distributed Document DBs

Problem and Motivation

Lianghong Xu (Carnegie Mellon), Andrew Pavlo (Carnegie Mellon), Sudipta Sengupta (Microsoft Research),
Jin Li (Microsoft Research), Greg Ganger (Carnegie Mellon)

• Document-oriented databases have emerged
› E.g., MongoDB, CouchDB, RavenDB, RethinkDB...
› “Document”: self-describing semi-structured data
› Popular building block for web services

• Problem: network bandwidth for geo-replication
› Replicas synchronize by sending operation logs (oplogs)
› WAN bandwidth is expensive and upgraded slowly
› Limited bandwidth may degrade user performance

• Oplog deduplication is a promising approach

Why Deduplication?
• Why not just compress?

› Update batches are small
› Random unrelated docs

Why Traditional Dedup is Insufficient
• Key characteristics of document database workloads

› Most documents are small (< 100 KB)
› Changes are small (10s of Bs) and dispersed (~5/doc)
› Limited spatial chunk locality
› Decent temporal locality of document updates

• Traditional dedup (tradDedup) does not work well
› Need to index every unique chunk
› Too many chunks have small changes
› Decreasing chunk size increases indexing overhead

Similarity-based Dedup (sDedup)
• Deduplication workflow

› Use sampled chunk hashes to find similar docs
› Select one best match as source
› Delta compress

• Resource-efficient design
› ≤ 8 index entries per doc (vs. 1 per chunk in tradDedup)
› Compact key signature for Cuckoo hashing
› Small source document cache (90% hits)

• Easy integration into existing document DBMSs
› Use sDedup on each oplog entry
› Send deduplicated data to replicas

Evaluation
• MongoDB v2.7, Wikipedia dataset

• Why not just “diff”
› Need application guidance to identify source
› Limited scope for available sources

• Deduplication finds and removes redundancy
› Relative to entire corpus w/o application guidance

32 17 25 41 12

3241

Top-2 hashes (features)

2232 1519

32 25 38 41 12

32 25 38 41 12

32 17 38 41 12

Target document(41, 32)

Similar candidate sources

Doc1. (32, 19)

32 17 38 41 12

Rank Candidates Score
1 Doc2 2
1 Doc3 2
2 Doc1 1

initial ranking

Rank Candidates in cache?
(reward: 2)

Score

1 Doc3 Yes 4
2 Doc2 No 2
3 Doc1 No 1

Final ranking

Doc2. (41, 32)

Doc3. (41, 32)

Doc2. (41, 32)

Doc3. (41, 32)

Sketches

Chunk boundary

Modified region

Identified duplication

Chunk-identity-based deduplication

Document-similarity-based deduplication

Target document

Data chunks

Consistent sampling
Sketch

(top-K features)

Feature index
table

Empty? Unique
document

(No) Score and rank
Fetch highest-ranked
document

List of similar documents

(Yes)

Dedup
metadata

cache
Dedup

metadata
container

Highest-ranked
similar document'

Document
Database

Source
document

cache

Delta compress with
target document

Delta encoded
segments

Disk Memory

Rabin chunking

Step 1:
find

similar
docs

Step 2:
select
best

match

Step 3:
delta

compress

Shards

Comp. Ratio

1

38.4

3

38.2

5

38.1

9

37.9

Scaling with sharding

Index memory
900
800
700
600
500
400
300
200
100

0In
de

x
m

em
or

y
us

ag
e

(M
B

)

Chunk size
4KB 1KB 256B 64B

Failure recovery
250
200
150
100

50
0C

om
pr

es
si

on
 ra

tio

0 50 150100 200 250
Inserted documents (thousand)

400350300

sDedup workflow

Find similar docs + select best match

Compression ratio
45
40
35
30
25
20
15
10
5
1

C
om

pr
es

si
on

 ra
tio

Chunk size
4KB 1KB 256B 64B

