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• Document-oriented databases have emerged
› E.g., MongoDB, CouchDB, RavenDB, RethinkDB...
› “Document”: self-describing semi-structured data
› Popular building block for web services

• Problem: network bandwidth for geo-replication
› Replicas synchronize by sending operation logs (oplogs)
› WAN bandwidth is expensive and upgraded slowly
› Limited bandwidth may degrade user performance

• Oplog deduplication is a promising approach

Why Deduplication?
• Why not just compress?

› Update batches are small
› Random unrelated docs

Why Traditional Dedup is Insufficient
• Key characteristics of document database workloads

› Most documents are small (< 100 KB)
› Changes are small (10s of Bs) and dispersed (~5/doc)
› Limited spatial chunk locality
› Decent temporal locality of document updates

• Traditional dedup (tradDedup) does not work well
› Need to index every unique chunk
› Too many chunks have small changes
› Decreasing chunk size increases indexing overhead

Similarity-based Dedup (sDedup)
• Deduplication workflow

› Use sampled chunk hashes to find similar docs
› Select one best match as source 
› Delta compress

• Resource-efficient design
› ≤ 8 index entries per doc (vs. 1 per chunk in tradDedup)
› Compact key signature for Cuckoo hashing
› Small source document cache (90% hits)

• Easy integration into existing document DBMSs 
› Use sDedup on each oplog entry
› Send deduplicated data to replicas

 

Evaluation
• MongoDB v2.7, Wikipedia dataset

• Why not just “diff”
› Need application guidance to identify source
› Limited scope for available sources

• Deduplication finds and removes redundancy
› Relative to entire corpus w/o application guidance
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Scaling with sharding
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Find similar docs + select best match
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