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ABSTRACT
There is a trend in recent database research to pursue coordination

avoidance and weaker transaction isolation under a long-standing

assumption: concurrent serializable transactions under read-write

or write-write conflicts require costly synchronization, and thus

may incur a steep price in terms of performance. In particular, dis-

tributed transactions, which access multiple data items atomically,

are considered inherently costly. They require concurrency con-

trol for transaction isolation since both read-write and write-write

conflicts are possible, and they rely on distributed commitment

protocols to ensure atomicity in the presence of failures. This paper

presents serializable read-only and write-only distributed transac-

tions as a counterexample to show that concurrent transactions

can be processed in parallel with low-overhead despite conflicts.

Inspired by the slotted ALOHA network protocol, we propose a

simpler and leaner protocol for serializable read-only write-only

transactions, which uses only one round trip to commit a trans-

action in the absence of failures irrespective of contention. Our

design is centered around an epoch-based concurrency control

(ECC) mechanism that minimizes synchronization conflicts and

uses a small number of additional messages whose cost is amortized

across many transactions. We integrate this protocol into ALOHA-

KV, a scalable distributed key-value store for read-only write-only

transactions, and demonstrate that the system can process close to

15 million read/write operations per second per server when each

transaction batches together thousands of such operations.
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1 INTRODUCTION
To overcome the performance gap between traditional relational

databases and web-scale data requirements [12, 33], recent research

efforts have explored coordination avoidance in special cases [3, 25],

as well as the more general trade-off between transaction isolation

and performance under the following assumption: concurrent se-

rializable transactions under read-write or write-write conflicts

require costly synchronization, and thus may incur a steep price

in terms of performance [3]. However, this assumption ignores

the possibility that conflicting writes need not block each other, or

violate serializability if read-write conflicts are not present at the

same time.

An alternative school of thought favors the continued use of

transactions and strong consistency in distributed storage systems

[1, 2, 4, 10]. ACID transactions shelter application developers from

complex concurrency control mechanisms and from analysis of

application-level consistency violations under weak isolation.

Atomic read-only or write-only transactions, although less pow-

erful than general ACID transactions, have been debated intensely

in recent research [11, 14, 19, 27]. They are well suited to systems

that process reads and writes in batches for efficiency, but also

require atomicity for each batch (i.e., two writes within one batch

must both succeed or both fail). For example, StoreAll with Express

Query [16] is a scalable file metadata system built on top of Lazy-

Base, a distributed storage layer in which clients batch updates

together into self-contained units (SCUs) [9]. Write-only transac-

tions naturally support the atomic insertion of an SCU containing

up to thousands of updates. For instance, atomically moving a set

of files from system A to system B, involves deleting metadata in

system A and inserting in system B. Another application of such

transactions is distributed system automatic reconfiguration [26]

to achieve data migration and dynamic replication factor adjust-

ment [22, 29]. Although this paper focuses on processing read or

write operations in batches, atomic read-only or write-only trans-

actions can be used to support read-write transactions as discussed

in Section 8.

While useful in practice, read-only or write-only transactions in

distributed storage systems inherit two costly aspects of conven-

tional transactions: they require concurrency control for transaction

isolation since both read-write and write-write conflicts remain
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possible, and they rely on distributed commitment protocols to en-

sure atomicity in the presence of failures. Many systems either bite

the bullet and pay a performance penalty for serializable distributed

transactions [2, 10, 28], or sacrifice serializability while providing

some alternative form of strong consistency [4, 18]. The transac-

tional solutions rely on costly atomic commitment protocols in the

sense that at least two network round trips are required to commit a

transaction in the presence of contention. The high contention foot-

print of such protocols easily becomes a performance bottleneck as

contention increases, which triggers additional protocol messages

as conflicting transactions resolve their relative serialization order.

In search of a simpler and leaner protocol for read-only/write-

only(ro/wo) transactions, we present a system that draws inspira-

tion from the slotted ALOHA network protocol [24]. Specifically,

we propose a scheme for supporting serializable multi-partition

read-only and write-only transactions by splitting time into read-

only and write-only epochs. Our design relies on an epoch-based
concurrency control (ECC) mechanism that minimizes conflicts be-

tween multi-partition transactions while using minimal metadata,

thus enabling high throughput. On the other hand, ECC leads to

potentially greater latencies and latency variations by forcing trans-

actions to execute in alternating read-only and write-only epochs.

To better understand the performance envelope of ECC, we

incorporate it into a scalable distributed key-value store, called

ALOHA-KV, and compare it against RAMP [4]. The experimental

results show that when transaction size exceeds 6-10 key-value

pairs, our system outperforms RAMP in terms of both through-

put and latency, at the same time providing stronger transaction

isolation.

2 SYSTEM MODEL AND ARCHITECTURE
ALOHA-KV is a scalable multiversion storage system that supports

serializable read-only and write-only transactions across multi-

ple data partitions. The system is optimized for high throughput.

ALOHA-KV is therefore most suitable for applications that toler-

ate larger latencies and latency variations, although as we show

in Section 6, it can be tuned to achieve a balance of latency and

throughput that meets or exceeds a best-of-breed system.

Internally, ALOHA-KV uses a distributed transaction protocol

that combines epoch-based concurrency control (ECC) for trans-

action isolation and an atomic commitment mechanism whose

amortized complexity is one network round trip per transaction.

2.1 System Model
In memory DB. All data can reside in main memory.

Horizontal partitioning. Each data item, identified by a key, has

a single logical copy in its hash partition.

Read-only and write-only transactions. The system exploits

the special structure of read-only and write-only transactions to

minimize concurrency control overheads.

Multiversioning. Each write operation creates a new version of

a data item, identified by a distinct version number. We leverage

object versions for concurrency control, but their main purpose

is to support historical queries. The version number is therefore a

timestamp generated by the system at the beginning of transaction

Server-
backend
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frontend

Server-
backend

Server-
frontend

Server-
backend

Server-
frontend

client client client
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Manager

network

Figure 1: ALOHA-DB architecture.

processing. Versions older than a user-specified threshold can be

removed by a garbage collector to free memory.

Timestamps and clocks.To generate a unique timestamp, a server

combines its unique server ID, a monotonically increasing number,

and the time from its local clock. Tight clock synchronization across

servers benefits performance but is not required for correctness

of ECC. Standard synchronization techniques suffice, such as NTP

executed over a low-latency network.

Serializable isolation. Committed transactions are serialized ac-

cording to their timestamps. Write-only transactions are physically

isolated from read-only transactions by our epoch-based concur-

rency control mechanism, which automatically deals with read-

write conflicts. Conflicting write-only transactions are permitted

to execute in parallel since they act on different versions of data.

Read-only transactions that access old versions of data can be exe-

cuted during a write epoch without causing conflicts as long as the

version accessed precedes the start of the write epoch. Otherwise,

such transactions must wait until the next read epoch.

2.2 Architecture
The architecture of ALOHA-KV, illustrated in Figure 1, comprises

a collection of server backends (BEs), server frontends (FEs), and

an epoch manager (EM).

FE: the transaction coordinator. An FE accepts transaction re-

quests from clients, and acts as a transaction coordinator: it starts

transaction execution during the correct epoch, generates a times-

tamp for each transaction, and communicates with the BEs to de-

termine the outcome of each transaction. Clients may connect to

any FE, and each FE may contact any BE where the required data

items reside.

EM: decides epochs. The EM communicates with all FEs to control

epoch changes, and thus determines when the FEs are able to start

executing a given transaction. The durations of read and write
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epochs are either determined automatically by the EM, or tuned

manually.

BE: the data store. A BE stores the data items in one partition of

the database, and serves requests from FEs to read and write these

items.

Deployment. The system is optimized for deployment in a private

data center with a high-speed network. Although not necessary for

correctness, good network performance and predictability (e.g., low

jitter) help our system achieve high throughput and low latency.

BE/FE pairs can be co-located on the same host, denoted by a

gray box in Figure 1. Each system component can be replicated for

fault tolerance, as discussed in Section 4.4. Furthermore, the epoch

manager can be distributed for scalable performance, as discussed

in Section 5.2.

3 EPOCH-BASED CONCURRENCY CONTROL
MECHANISM

ALOHA-KV achieves transaction isolation using Epoch-based Con-
currency Control (ECC). Conceptually, ECC is the combination of

two techniques that maximize parallelism. First, ECC schedules

read-only transactions and write-only transactions into disjoint

time slots, called read-only and write-only epochs, to eliminate

read-write conflicts. Note that ALOHA-KV accepts both types of

transactions at all times, and merely delays the start of transaction

execution as needed to ensure that each transaction runs during

the correct epoch type. For example, a write-only transaction ac-

cepted during a read epoch begins executing in the next write epoch.

Second, ECC uses multiversioning to resolve write-write conflicts,

which allows write-only transactions to proceed in parallel even

when their write sets overlap. Both techniques combined ensure

that transactions never abort or deadlock due to conflicts, which

benefits throughput under contention.

In addition to dealing with conflicts efficiently, ECC minimizes

communication overheads by simplifying atomic transaction com-

mitment. Specifically, ECC cannot have “reads-from” dependencies

among transactions executing within the same epoch, which means

that the effects of a partially committed transaction cannot be ob-

served until the next epoch. This enables one-phase commitment

for write-only transactions, with a second phase required only if

the transaction must be rolled back, for example due to an abort

on failure. Any additional messages needed to orchestrate epoch

switches are amortized over a large number of transactions. In

contrast, two-phase commit requires both phases even when a

transaction commits in the failure-free case.

In this section we describe implementation details pertaining to

the epoch switching mechanism.

3.1 States and Invariants
The performance benefits of ECC are contingent on tight synchro-

nization of the epoch status (read vs. write) across FEs. The syn-

chronization mechanism records state information at the EM and

FEs and guarantees a number of invariants with respect to this

state.

Authorization. An FE can start processing a transaction only if it

holds appropriate authorization, which is granted by the EM. An

authorization comprises the epoch type (read or write), as well

as two timestamps indicating a finite validity period. Transaction
timestamps are always assigned within the validity period. An FE

may hold at most one authorization at a time, ensuring exclusion

among read-only and write-only transactions.

Epoch duration. From the point of view of an FE, an epoch is the

period of time from when an authorization is granted by the EM to

when the authorization is revoked, which is always after the end

of the validity period.

Timestamp generation. A write-only transaction is assigned a

timestamp when it is started by an FE. Recall that the timestamp is

also the version number of the transaction. The FE guarantees that

the timestamp is within the epoch’s validity period to ensure that

the serialization order of transactions, which is determined by the

timestamps, is consistent with the order of epochs.

Transaction start policy. Write-only transactions can only be

started under valid write authorization. Similarly, read-only trans-

actions retrieving the latest data version can only be started under

valid read authorization. However, read-only transactions accessing

old versions of data (i.e., historical queries) can be started either

under valid read authorization, or under valid write authorization

if the version accessed precedes the start of the current validity

period.

Transaction completion policy.A transaction that begins in one

epoch must complete within the same epoch. Once the validity

period of an epoch expires, an FE must wait for all pending trans-

actions to complete before acknowledging to the EM that autho-

rization has been revoked.

Total order on epochs. The EM must revoke all authorizations

from FEs before granting a new authorization, which is tagged with

a monotonically increasing ID. Epochs and their corresponding

authorization validity periods are therefore disjoint.

Alternating epoch types. The EM drives an alternating sequence

of read and write epochs, meaning that the epoch type changes

each time an authorization is granted.

3.2 Transaction Barriers
For clarity of presentation, the pseudo-code presented later on

in Section 4 omits the low-level details of the message passing

protocol for epoch switching and instead use a high-level API we

call a transaction barrier. The API comprises two primitives called

Begin_Barrier and Finish_Barrier. Begin_Barrier checks the FE’s

current epoch authorization and either admits the transaction if

the authorization is valid and has the correct type, or else blocks

the transaction until the correct authorization becomes valid. If

the transaction is admitted, the count of in-flight transactions is

increased by 1. Finish_Barrier retires transactions by updating the

count of in-flight transactions, which must reach zero before the

revocation of authorization.

3.3 Example
Figure 2 illustrates ECC using two FEs, each executing transactions

in three worker threads. The epoch switch procedure works as

follows:

(1) The EM grants the FEs write authorization. The start and

end of the validity period are indicated by vertical dashed

lines in the figure. In practice, the validity period should be
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Figure 2: Illustration of epochs.

long enough so that the cost of epoch switching is amortized

over many transactions.

(2) In the write epoch, each worker thread executes write-only

transactions until the validity period expires. In the mean-

time, read-only transactions accessing the latest version are

buffered but historical queries can be admitted if they access

sufficiently old versions.

(3) Some pending transactions may continue to execute past

the end of the validity period. All such transactions must be

run to completion in the current write epoch before the next

epoch begins.

(4) Once all pending transactions are complete, the FE acknowl-

edges to the EM that the write authorization is revoked. The

FE now awaits a read authorization.

(5) After the EM receives acknowledgments from all the FEs it

grants a read authorization for the next epoch.

4 IMPLEMENTATION
To evaluate the performance envelope of ECC we incorporated it

into a key-value storage system called ALOHA-KV. This section

discusses the system’s implementation details.

4.1 Data Representation in Storage
ALOHA-KV stores key-value pairs in a hash-partitioned distributed

table. The values are versioned to support historical queries, as

well as to enable multiversion concurrency control for write-only

transactions. In other words, each version of a value is represented

as a pair of the form ⟨version,value⟩. For each key, the versions

are organized in a logical list ordered by version, implemented as

a linked list of arrays. This data structure is a hybrid of linked list

and array to accommodate removing old versions and efficiently

accessing recent versions.

Inserting a new version of a key-value pair during a write-only

transaction entails adding an entry to the array of the key, keeping

the versions in sorted order. Since transactions with different times-

tamps execute in parallel during a write epoch, it is not always

the case that the newly created version is the latest version. In

other words, the new version may have already been overwritten

by another transaction. Such an outdated version will not be visible

to future read-only transactions that access the latest data, but can

still be requested by a historical query. This is in contrast to con-

ventional timestamp ordering with Thomas’ write rule, where an

outdated value need not be written at all. In practice new versions

tend to arrive in nearly sorted order since the version numbers are

derived from timestamps, and this enables efficient insertion. The

system does not allow insertion of versions that predate the start

timestamp of the write-only epoch.

Retrieving a value begins with determining the correct data ver-

sion with respect to the transaction timestamp. This is either the

latest version, if the transaction requests the latest data, or the latest

version not exceeding a given version number, if the transaction is

a historical query.

Deleting a version from the table occurs in two situations: when

old versions are cleaned up by the garbage collector to recover

memory, or when a transaction aborts in a write epoch. In general,

deleting a version entails removing the corresponding items from

the array of the key. In the case of garbage collection, the deleted

version must be older than a threshold that is no longer needed

by any reads. Garbage collection can be triggered periodically, or

when the system is low on memory.

4.2 Transaction Protocol
The transaction protocol executed by the FE and BE is presented in

Algorithms 1 and 2, respectively. The epoch switching mechanism

and interaction with the EM is represented implicitly in Algorithm 1

using transaction barriers, which were described earlier in Section 3.

The entire protocol is implemented in C++ using fbthrift—a popular

open-source RPC framework [13].

As presented in Algorithm 1, transaction execution begins with

the invocation of the PutAll, GetAllLatest, or GetAllHistorical
procedure at an FE, which acts as a coordinator. The FE executes a

transaction barrier to ensure that it has appropriate authorization

for the given transaction, and then accesses the relevant keys in

one or more partitions by invoking partition requests—calls to pro-

cedures Put and Get at BEs. Abort is called to roll back a write-only
transaction.

For a write-only transaction, the FE first generates a unique

timestamp ts (as described in Section 2) at line 3 of PutAll. It then
builds a set of data versions at line 5, and distributes these versions

to different partitions at line 7 by calling Put on different BEs. For

simplicity, the pseudo-code shows separate calls to Put for each data
item (similarly for Abort and Get later on), but in practice requests

destined for the same BE are batched together. Each data version

includes the key-value pair, transaction timestamp, epoch ID, as

well as the transaction size (used in recovery, see Section 4.4.2). The

PutAll procedure is regarded as successful if every call to Put has

succeeded, otherwise if one or more calls fail then the FE invokes

Abort on each partition involved to roll back the transaction. This

is the second round of the atomic multi-write protocol.
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A read-only transaction is executed similarly, but never needs a

second round of messaging to abort. This is because a read-only

transaction does not alter the state of a BE, and so there are no

actions to roll back on failure. Procedure GetAllLatest returns

the latest data versions for the given set of keys by calling proce-

dure Get on respective partitions with a special timestamp value of

⊥. Procedure GetAllHistorical executes a historical query and

accepts a user-specified timestamp that defines the desired data ver-

sion. Internally, the procedure behaves similarly to GetAllLatest
but uses a transaction barrier only during a write epoch if the re-

quested timestamp exceeds the start of the current validity period.

Procedures Get, Put, and Abort at BEs operate on the multiver-

sion storage MV described in Section 4.1 for insertions, lookups,

and deletions of key-value pairs. Procedure Put inserts versions,

Abort deletes entries, and Get retrieves the latest version as of a

given timestamp.

Algorithm 1: Transaction protocol for FE.

1 Procedure PutAll(W: set of ⟨keyk, valuev⟩)
2 Begin_Barrier

3 ts = generate new timestamp

4 eid = current epoch ID

5 V = {(w .k,w .v, ts, eid, |W |) | w ∈W }

6 parallel-for v ∈ V do
7 invoke Put(v) on respective partition

8 if any call to Put fails then
9 parallel-for v ∈ V do

10 invoke Abort(v) on respective partition

11 Finish_Barrier

12 Procedure GetAllLatest(K: set of keys)
13 Begin_Barrier

14 ts = generate new timestamp

15 Finish_Barrier

16 parallel-for k ∈ K do
17 invoke Get(k , ts) on respective partition

18 return union of responses from calls to Get

19 Procedure GetAllHistorical(K: set of keys, ts: timestamp)
20 if holding write authorization with validity period starting

at or before ts then
21 Begin_Barrier

22 Finish_Barrier

23 parallel-for k ∈ K do
24 invoke Get(k , ts) on respective partition

25 return union of responses from calls to Get

4.3 On Straggler Side Effects
A straggler transaction is one that prevents an FE from revoking an

authorization for a long time. It may delay the start of the next epoch

for all FEs, and further degrade the overall throughput. Stragglers

may arise from resource limitations during transaction process-

ing, from long running transactions, or from software/hardware

anomalies.

Algorithm 2: Transaction Protocol for BE.

Data:MV : multiversioning storage described in section 4.1

1 Procedure Put(v: ⟨key,value, ts, eid, txnsize⟩)
2 returnMV [key].insert(ts,v)

3 Procedure Abort(v: ⟨key,value, ts, eid, txnsize⟩)
4 MV [key].remove(ts)

5 return
6 Procedure Get(k: key, ts: timestamp)
7 returnMV [k].дet(ts)

In the absence of anomalies, long delayed stragglers are unlikely

to occur in our system for the following reasons. First, the number

of in-flight transactions (preventing authorization revocation) de-

creases to zero after the epoch’s finish timestamp is reached. As

a result, in the course of an epoch switch, the contention among

in-flight transactions tends to zero. Second, our system only handles

one-shot transactions and is able to process them quickly by read-

ing and writing in-memory data within epochs. In our experiments,

we did not observe long-running stragglers even for transactions

including thousands of keys.

Another observation is that slow read-only transactions will

not block revoking authorization and delay starting of the next

write epoch. This is because the read-only transaction only accesses

historical versions after it gets a timestamp at line 14 of Algorithm 1

and then releases the barrier at line 15.

4.4 Fault Tolerance
ALOHA-KV relies on main memory storage for performance, and

therefore depends crucially on appropriate fault tolerance mecha-

nisms to protect against data loss and maintain system availability

in the event of a server failure. In this section we explain how the

strategies of replication, logging, and checkpointing to persistent

storage are applied to different components of the system.

4.4.1 Replication. BE replication. Replication is essential for

BE servers, which store key-value pairs. During write epochs, the

FE writes primary BEs as well as backup BEs. Note that in ECC,

write-only transactions can achieve both concurrency control and

replication in one round trip amortized if there are no aborts. In

comparison, traditional 2PL/2PC with primary-backup requires two

rounds for 2PC plus an extra round for replication. During read

epochs, load balancing is possible between primary and backup

servers because they hold exactly the same data.

Fast epoch switch at FE/EM failure. Failures of FE servers

do not lead to loss of data, but may stall the ECC mechanism en-

tirely. This is because the EM must receive acknowledgments of

authorization revocation from the previous epoch before grant-

ing authorization for the next epoch. The backup FE is therefore

charged with completing all pending transactions and reporting

back to the EM if the primary FE fails during a write epoch. This re-

quires that the primary forwards each transaction to the backup at

the beginning of transaction execution, and confirms to the backup

after execution. If the primary FE fails, the backup acts temporarily

as the coordinator, simply aborting all in-flight transactions in the

interest of a fast epoch switch. Once a BE is contacted by the backup
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FE, it deems the primary is failed and rejects any further requests

from the primary FE within the epoch. This mechanism is similar

to [5, 15] and deals with the anomaly where both primary and

backup believe they are the primary. As clients continue to send

requests to FEs, the failed FE is not allowed to participate in future

epochs. In the course of an epoch switch the FEs become nearly

idle and so aggressive failure detection (e.g., based on a sub-second

heartbeat) can be used.

Similarly, failure of the EM can lead to loss of synchronization

among FEs, for example with some servers starting a new epoch

while others await authorization. When the primary EM fails, the

backup first polls the FEs to determine how many of them have

not yet acknowledged authorization revocation for the most re-

cent epoch. When the outstanding acknowledgments are received,

the backup EM may resume ordinary execution by granting the

next authorization. EMs use a handover mechanism and aggressive

failure detection similarly to FEs.

4.4.2 Logging and Checkpointing. To protect data against a

system-wide failure, such as loss of power to an entire rack of

servers or data center, ALOHA-KV persists data by logging opera-

tions to secondary storage. Specifically, the BEs log all the requests

they receive from FEs during write epochs. To avoid a performance

bottleneck, our design opts for an asynchronous form of logging

whereby worker threads append log entries to an in-memory buffer

that is flushed periodically by a dedicated thread. We ensure that all

data are flushed to disk before the next epoch starts, thus enabling

the following guarantees: (1) a transaction executed in a failure-

free write epoch is never lost; (2) a write-only transaction whose

effects are observed by a read-only transaction is never lost; and (3)

transaction recovery is atomic: either all or none of the operations

in a transaction are recovered.

A checkpoint is a persistent snapshot of the whole database. As

a multiversion system, ALOHA-KV can create a consistent check-

point simply by dumping the versions of all keys before a given

timestamp. Our design creates checkpoints only at an epoch finish

timestamp for easy recovery.

Recovery logs are organized into a collection of files, with one

file per BE per write epoch. Each log file is capped with a special

record at the end of a write epoch to indicate that it is complete.

After a failure, the recovery procedure first reloads a checkpoint and

all completed log files. Logs from the most recent epoch are then

sent to a recovery coordinator, which checks for each transaction

whether the number of operations present in the logs matches the

size of the write set, which is recorded in the partition requests

(see line 5 in Algorithm 1). For atomicity, any transactions having

a full complement of operations are replayed, and the remaining

transactions found in incomplete logs are aborted.

5 THEORETICAL ANALYSIS
The performance envelope of ALOHA-KV is substantially differ-

ent from other systems because ECC schedules transactions into

epochs. This section discusses the factors affecting the latency and

throughput of the system. We define throughput as the number of

key-value pair operations per second, which in our experiments

equals the number of transactions executed per second times the

(fixed) transaction size. We also sketch out a proof of serializability.

5.1 System Throughput
The ECC protocol periodically switches between write epochs and

read epochs. Consider a unit of execution containing one write

epoch followed by one read epoch. Let P denote the overall through-

put in the unit, PW the throughput of writes in the unit, Pw the

throughput of writes in the write epoch, PR and Pr denote anal-

ogous quantities for reads. Let tw , ts , tr denote the duration of

a write epoch, the epoch switch time, and the duration of a read

epoch, respectively. Let nw denote the number of write operations

executed in the write epoch. The overall write throughput is

PW =
nw

tw + 2ts + tr
(1)

which can be rewritten as

PW = Pw ×
tw

(tw + 2ts + tr )
(2)

since Pw = nw /tw . Using a similar equation for Pr , total throughput
can be expressed as follows:

P = Pw ×
tw

(tw + 2ts + tr )
+ Pr ×

tr
(tw + 2ts + tr )

(3)

Equation 3 suggests the following strategies tomaximize through-

put: increase Pw and Pr , decrease the epoch switch time ts , and
increase the epoch durations tw and tr .

For the first strategy, the main factors affecting Pw and Pr are
as follows: (1) Transaction size. Larger transactions benefit from
better network and processing efficiency due to batching, but they

are more likely to overrun the validity period of an epoch, which

complicates epoch switching. (2) Number of servers. On one hand,

adding servers increases I/O and processing capacity. On the other

hand, it increases the number of partitions and hence causes trans-

actions to be processed by BEs in smaller pieces, which counters

the benefits of batch processing.

For the second strategy, we observe that epoch switch time ts
roughly amounts to the sum of one round of communication be-

tween the EM and FEs, and the time required to complete any

pending transactions. In particular, ts is highly dependent on the

slowest FE to acknowledge authorization revocation. We propose

the following strategies to reduce ts : (1) Minimize EM-FE communi-
cation latency. For example, use a separate execution path for epoch

switch messages versus transaction messages, such as using a dedi-

cated and prioritized thread for epoch switch. (2) Handle stragglers
individually. Some servers may be consistently slower than others

due to differences in hardware configuration or network connec-

tivity, in which case they can be authorized by the EM for shorter

epoch durations.

On clock skew. The clock skew between any FE and the EM

cannot violate the serializability guarantee of ECC, because an FE

must assign a transaction timestamp within the validity period

given by the EM. In other words, the timestamp lies in the inter-

section of the FE’s and EM’s interpretations of the validity period

according to their local clocks. Thus, if an FE has a large clock

skew relative to the EM, the period during which FE can generate

timestamps and process transactions may be small.
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5.2 Epoch Switch Scalability
The transaction barrier is one of the main factors affecting sys-

tem performance, as explained in Section 5.1, and therefore we

consider two design alternatives: a centralized approach and a tree-

structured hierarchical approach. The remainder of this section will

develop performance models for both alternatives.

In the centralized approach, the epoch switch phase entails both

message passing over the network and message processing to count

how many FEs have reached the barrier. For simplicity, we assume

the round trip network latency between hosts is a constant Ln , and
that processing a message from one host also takes a constant time

Lp . Assuming that all FEs finish pending transactions at the same

time, the latency L of the barrier can be written as

L = Ln + Lp × n (4)

where n denotes the number of FEs.

In the hierarchical approach, let d denote the degree of the tree.

In this model, the tree height is

⌈
logd n

⌉
, denoting the number of

network hops from an FE to the EM in the tree, and each non-leaf

node is expected to process d messages from child nodes. Thus, L
in this model is

L = (Ln + d × Lp ) ×
⌈
logd n

⌉
(5)

Note that equation 4 is a special case of 5 when d = n.
Finally, if FEs finish pending transaction processing at different

times, and the slowest FE takes Lf time to finish pending transac-

tions, the latency can be bounded as

L ≤ Lf + (Ln + d × Lp ) ×
⌈
logd n

⌉
(6)

which is tight when the slowest FE is a leaf node in the tree topology.

Formula 6 suggests that when network latency is low and mes-

sage processing is expensive, a smaller d and larger tree height

yield lower epoch switch latency L. Otherwise a larger d is pre-

ferred, which in the extreme case d = n makes the hierarchical and

centralized alternatives equivalent. Asymptotically, a hierarchical

barrier has better complexity in terms of n (O(logn) in formula 5)

than centralized (O(n) in formula 4), but experimentally (see Sec-

tion 6.4.2) the centralized approach yields very fast epoch switch

times even with hundreds of FE nodes.

5.3 Analysis of Serializability
Informally, serializability is the illusion that transactions are pro-

cessed in a serial order [8, 21]. We now sketch a proof that ALOHA-

KV satisfies this property.

Lemma 5.1. Every history of committed transactions generated by
ECC is serializable.

Proof sketch. Given a history H of committed transactions,

assign a timestamp to each transaction as follows: for a write-only

or read-only transaction use the timestamp assigned by the FE at

line 3 and at line 14 of Algorithm 1, respectively; for a historical

read-only transaction use the timestamp passed by the client to the

GetAllHistorical procedure. Now arrange the transactions into a

serial history S in increasing order of their timestamp, breaking ties

arbitrarily for read-only transactions. It follows easily that H and S
have the same committed transactions and operations. Furthermore,

each read-only transaction obtains the highest version of a key that

does not exceed its own timestamp, and this version is created by a

unique write-only transaction. As a result, H and S have the same

“reads-from” relationships, and moreover S is one-copy serial. This

implies that H is serializable. �

6 EVALUATION
The experiments presented in this section demonstrate that ALOHA-

KV performs favorably compared to RAMP [4] in terms of both

throughput and latency for large transaction size (>6 for RAMP-S,

>10 for RAMP-F). Micro-benchmark results show that although

the latency of transactions in ALOHA-KV grows linearly with the

epoch duration, short epochs (tens of ms) are sufficient to attain

throughput levels close to the limit of the performance envelope.

ALOHA-KV is able to process around 230M operations per second

for large transactions using fifteen servers. We also show that a

single EM can orchestrate epoch switches in a timely manner even

when controlling hundreds of FEs.

6.1 Experimental Setup
The experiments were deployed in Amazon EC2, using c3.8xlarge

virtual machine instances in a single availability zone. Clocks across

hosts were synchronized using NTP to a double-digit microsecond

clock offset (usually < 20µs).
The experiments use the following default settings: five client

hosts and five server hosts running a co-located BE/FE pair (differ-

ent processes), with one server host running the EM. Data items

comprise eight-byte keys and values. We vary the transaction size,

defined as the number of key/value pairs accessed per transaction.

Keys are drawn uniformly at random from a space of 1M elements.

The ratio of write-only to read-only transactions is 1:1 to target both

read-intensive and write-intensive workloads. ALOHA-KV uses al-

ternating read epochs and write epochs with an epoch duration of

20ms. Fault tolerance (see Section 4.4) is disabled by default.

For comparison, we implemented a baseline system that repre-

sents an upper bound for performance with respect to the chosen

implementation language and RPC framework. In the baseline, FEs

and BEs process transactions without any concurrency control or

atomic commitment protocol, and there is no epoch switching. We

also execute RAMP on the same infrastructure with the same work-

load settings. Experimental measurements focus on average latency

and aggregate throughput of operations (transaction throughput

times transaction size), because we are more interested to see the

performance trade-offs of batching operations into transactions.

However, we present both the throughput of operations and of

transactions, both of which are used in the RAMP paper [4]. Each

data point represents the average of three runs, and is plotted with

error bars indicating the min and max measurements. In many

cases the error bars are imperceptibly small.

6.2 ALOHA-KV vs. RAMP Results
First, we compare ALOHA-DB with the recently published trans-

action protocol RAMP, which supports weaker-than-serializable

distributed ro/wo transactions [4]. We do not include 2PC/2PL in

our experiments because RAMP exhibits significant performance

gains over these techniques. Published RAMP experiments consider

only small transaction size (default 4, maximum 128), whereas we
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Figure 3: ALOHA-KV vs. RAMP under 20ms read/write
epoch duration. Throughput and latency presented using
logarithmic scales.

also are interested in larger transactions to determine the benefits of

batch processing. For a fair comparison, our experiment uses 5000

synchronous RPC clients in total (same as [4]). Of the three protocol

variations in [4], we tested RAMP-Fast and RAMP-Small only since

the performance of RAMP-Hybrid is known to be a compromise

between the other two.

Figure 3 shows that ALOHA-KV outperforms RAMP in terms

of both throughput and latency for large transactions (around >6

for RAMP-S, >10 for RAMP-F). The performance gaps grow as

transaction size increases. For transaction size 1000, our system

achieves throughput roughly 20× greater than RAMP-S, and over

three orders of magnitude greater than RAMP-F. ALOHA-KV scales

almost linearly with transaction size in terms of throughput, which

demonstrates the benefits of batching operations. We also see that

ALOHA-KV performance follows closely the baseline implementa-

tion despite providing atomic transaction commitment and serializ-

able isolation.

As reported in the RAMP paper, RAMP-F performs worse than

RAMP-S for larger transactions, with the performance gap widen-

ing as transaction size increases. This is because RAMP-F metadata

grows linearly with transaction size for each key. In the worst case,

a read-only transaction of size n may retrieve metadata referring

to n2 keys if each key in the transaction returns metadata con-

taining n other keys. In comparison, the latency of RAMP-S under

various transaction sizes is much flatter because it uses constant

size metadata. However, RAMP-S requires two round trips for all

read transactions, which explains the lower throughput relative

to ALOHA-KV. Furthermore, despite the more compact metadata,

RAMP-S uses protocol messages whose size is linear in the transac-

tion size.

For smaller transaction sizes, RAMP outperforms ALOHA-KV

slightly, because the metadata overhead in RAMP is small and

and because ALOHA-KV incurs an overhead for epoch switch-

ing. Furthermore, the RPC framework differences also account for

performance differences in small transaction size. For example at

transaction size 1, the throughput of RAMP-F and RAMP-S are

31% and 9.2% higher, respectively, than our baseline (no concur-

rency control, no atomic commitment). However, the throughput

of ALOHA-KV and RAMP-S for large transactions can indicate

the performance of batching of small-size transactions, because

metadata size is irrelevant to transaction size in these algorithms.

In summary, even though the RAMP protocol provides both syn-

chronization and partition independence [4], the potential benefits

of larger transactions are counteracted by the overheads of large

metadata in RAMP-F and large messages in RAMP-S. In contrast,

ALOHA-KV records minimal metadata and distributes transaction

execution across BEs using messages that grow linearly with trans-

action size.

6.3 Microbenchmark
To better understand the performance of ALOHA-KV under various

scenarios, we present the results of microbenchmark experiments.

Unless otherwise specified, we use the same deployment as in

Sec. 6.1. Clients use the fbthrift async-client API, which allows

issuing multiple requests without blocking on the response, and

enables potentially higher throughput than synchronous RPCs. The

experiments use transaction size 1000, 50% read-only transactions

and 100ms read and write epoch duration as default settings.

6.3.1 Epoch duration. Figure 4 shows results under various

epoch durations. We use 80 async clients, which ensures that the

ALOHA servers are not overloaded. The results confirm the intu-

ition that longer epochs yield both higher throughput by reducing

the proportion of time spent on epoch switching, and higher la-

tency bymaking transactions wait longer for authorization. Latency

grows nearly linearly with epoch duration, whereas throughput is

fairly flat beyond about 50ms.

The experiment also shows that epoch switching has relatively

little impact on performance. In particular, there is only around
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Figure 4: Throughput and avg. latency under various epoch
durations.

10% throughput difference between epoch durations of 10ms and

100ms. Thus, most of the throughput benefits of ECC are realized

with fairly short epochs, and little penalty in terms of latency. We

notice under large epoch duration (≥ 50), average latencies are less

than half of epoch duration. This is because transactions arriving

during the correct epoch enjoy a low latency, and transactions that

arrive out-of-epoch must wait half of an epoch duration on average

before they can begin executing. The average of the two cases is

less than half of the epoch duration when epoch duration is large.

6.3.2 Transaction size. Figure 5 illustrates the effect of transac-
tion size on throughput, which increases rapidly up to roughly 1000

operations per transaction. This is because batching boosts network

and processing efficiency. Beyond 2000 operations per transaction,

the system exhibits diminishing returns, and plateaus around 100

Mops/s. Since the transaction coordinator chops transactions into

fragments sent to different partitions, we expect that a larger trans-

action size is needed to saturate the throughput as the number of

servers increases.

6.3.3 Proportion of read-only transactions. In experiments per-

taining to the proportion of read-only vs. write-only transactions,

we considered two cases: when the proportion is known, and when

the proportion is unknown and the default epoch durations are

used. These cases are denoted as adaptive epochs and fixed epochs
in Figure 6. We also present the performance of the baseline, where

transactions execute without concurrency control and no atomic

commitment protocol is used.

The results show that even without any prior knowledge of the

read proportion, throughput using fixed epochs is roughly half or

more of the level observed using adaptive epochs. The results for
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Figure 6: Throughput under various read/write proportions.

adaptive epochs are representative of cases when the workload

exhibits a steady read/write mixture that is either known a priori,

can be predicted accurately, or can be measured on-the-fly. We also

observe low overhead for serializable transactions in ALOHA-KV

under various read ratios as compared with the baseline.

6.4 Scalability
We evaluated the scalability of ALOHA-KV with respect to different

numbers of servers from two angles: (1) the scale-out throughput
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Figure 7: Aggregate and per host throughput using txn size
4000

performance, (2) the overhead of epoch switching. In the first case,

we run ALOHA-KV up to a throughput of 233 Mops/s, achieving

close to linear throughput scalability. In the second case, we show

that a single EM can control hundreds of FEs with only single-digit-

millisecond overhead per epoch switch.

6.4.1 Scale-out. In this experiment, we vary the number of

servers hosting BE/FE pairs. The transaction size is set to 4000

to allow batching a significant number of operations in messages

sent to each BE. Figure 7 shows that using up to 15 BE/FE servers,

ALOHA-KV achieves around 233 Mops/s. Since the probability of

conflicts among write-only transactions grows with the observed

throughput, the results demonstrate that ECC sustains a high de-

gree of parallelism despite contention. Throughput per server drops

slightly as the number of servers increases due to less effective

batching, leading to sub-linear scalability. In the extreme case of

1 or 2 servers, the per-server performance is slightly lower than

that of 5 servers, due to the single host network performance limit.

However, when more servers are added to the system, additional

network resources are utilized by the servers.

6.4.2 Epoch switching overhead. As discussed in Section 5.2,

epoch management can be implemented either using a single EM,

or by organizing the FEs in a scalable hierarchical structure. In

this experiment we investigate whether a single EM has enough

processing capacity to control hundreds of FEs centrally. To isolate

the epoch switch time we set the epoch duration to zero, meaning

that each FE responds immediately to an authorization grant by

acknowledging authorization revocation. Upon receiving responses

from all FEs, the EM issues the next round of epoch switch requests.

Each FE instance is run on a distinct physical core, and there is no

client workload.

Table 1 shows the average epoch switch time for up to 640 FEs.

The epoch switch time grows nearly linearly with the number of

FEs, reaching 3.4ms at 640 FEs. As the number of FEs increases,

the EM needs more time to process epoch switch messages, whose

number grows linearly with the number of FEs. When the FEs are

under load from clients, it is expected that epoch switch times will

be longer than in this experiment because each FE must finish any

in-flight transactions before responding to the EM at the end of an

epoch. However, in that case the EM will be more lightly loaded

because it has more time to process the same number of messages.

Based on the experimental data, we conclude that a centralized EM

is sufficient for controlling a cluster of hundreds of ALOHA-KV

servers.

6.5 Fault Tolerance
Table 2 shows the performance of various fault tolerance strategies.

The system has five partitions, and each partition has a primary

server and a backup server in the experiments. In the table, “+log”

denotes the strategy of BEs writing operation logs to disk; “+FE”

denotes using backup FEs to take over the coordination when the

primary crashes; and “+BE” denotes using backup BEs to store a

copy of the data held by the primary.

The results show that “+log”, “+FE”, and “+BE” lead to throughput

penalties of 2–5%, 16–21%, and 20–25%, respectively. The “+log+FE”

strategy has low overhead and protects against data loss even if

an FE or BE crashes (see Section 4.4). The most expensive strategy

is “+log+FE+BE”, which achieves 35.5 Mops/s—roughly 40% slower

than no fault tolerance. In comparison, RAMP performance in some

cases is substantially lower without any replication.

7 RELATEDWORK
ALOHA-DB’s early stage architecture was broadly described in

an earlier workshop paper [14]. This paper elaborates on the ar-

chitecture, improves the protocol, and presents a comprehensive

performance evaluation.

Prior distributed storage systems mostly either pay a perfor-

mance penalty for serializable distributed transaction or sacrifice

serializability in favor of weaker isolation models. Sinfonia [2] pro-

vides serializable minitransactions, which internally use lock-based

concurrency control and a two-phase transaction commitment pro-

tocol. Spanner [10], which accommodates a broader class of transac-

tions, uses a similar mechanism combined with optimistic concur-

rency control, as well as data versioning to avoid locks for read-only

transactions. In contrast, VoltDB [28] executes transactions serially

in each partition, which avoids the need for concurrency control and

enables high throughput for single-partition transactions but forces

centralized coordination for multi-partition transactions. MDCC

[18] and RAMP [4] use commitment protocols in which the number

of network round trips depends on the contention encountered.

MDCC provides read committed isolation by default and RAMP

provides read atomicity, which is also weaker than serializability.

None of the above systems allow distributed write-only transac-

tions to be committed in amortized one round trip in the presence

of write-write conflicts.
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number of FE instances 80 160 240 320 400 480 560 640

epoch switch time (ms) 1.9 2.1 2.3 2.5 2.7 3.0 3.2 3.4

Table 1: Epoch switch time for various numbers of FE instances.

No fault tolerance +log +FE +log+FE +BE +log+BE +FE+BE +log+FE+BE

Throughput (M ops/s) 58.3 56.4 49.0 46.7 46.6 44.4 36.8 35.5

Throughput (K txn/s) 58.3 56.4 49.0 46.7 46.6 44.4 36.8 35.5

Table 2: Evaluation of various fault tolerance strategies.

Other systems address distributed transactions using determin-

istic scheduling. Deterministic databases such as Calvin [23, 30, 31]

process transactions in deterministic order, which makes it possi-

ble to process write-only transactions in one round trip. However,

transactions cannot abort using a second round even if some par-

tition is overloaded or failed. Our evaluation does not include the

open-source Calvin implementation because it relies on two opti-

mizations that make an apples-to-apples comparison difficult: (1)

it merges the benchmark client and server into one binary, and

(2) it batches multiple transactions in one request message. How-

ever, we predict that Calvin’s performance may suffer from the

single-threaded lock manager for write-only transactions, whereas

ALOHA-KV and RAMP both use multiversioning and nearly avoid

locking for writing a new version.

Previous works use epochs to structure transaction processing

in various ways [17, 20, 32]. Silo [32] and its more scalable relative

FOEDUS [17] use epochs to ensure serializability on recovery from

failures, to facilitate garbage collection, and to provide read-only

snapshots. Phase reconciliation [20] repeatedly cycles split phases,
epochs that only process commutative operations, and joined phases,
epochs that process other operations. Phase reconciliation resem-

bles ECC on first impression, but isolation of reads from writes

in our system is orthogonal to isolation of commutative and non-

commutative operations in their system. For example, two writes

on the same key do not commute and thus cannot be processed

concurrently in phase reconciliation, but can be processed in par-

allel in ALOHA-KV. Additionally, these other systems target sin-

gle machine transactions, whereas ALOHA-KV targets distributed

transactions.

Efficient read-only/write-only transaction protocols are pro-

posed in priorworks, such as Eiger [19],Walter[27], andG-store [11],

and can be used in batch processing systems [9, 16]. For these trans-

action types, ALOHA-KV also benefits from batching, and achieves

throughput-optimized performance even under high contention.

However, none of these previous works provide serializable isola-

tion as ALOHA-KV.

8 FUTUREWORK
ECC support lightweight read-only and write-only transactions for

distributed key-value stores. Recent research [6, 7, 15] proposed

building distributed read-write transactions using blind multi-key

writing by atomically writing a log entry in Corfu [5]. We believe

ECC can be extended to support ACID read-write transactions for

scale-out database systems, and plan to demonstrate this point.

ECC introduces an interesting tuning knob for adaptivity with re-

spect to workload variations, such as changes between read-heavy

and write-heavy workloads, or large versus small transactions. Our

various read/write ratio experiments show that fixed epochs achieve

at least half of the throughput possible using adaptive epochs. How-

ever, in future work we plan to develop an intelligent self-tuning

mechanism that will adjust the epoch durations dynamically in

response to the workload.

In addition, we will consider techniques for reducing epoch

switch time, which hurts throughput. Aside from software tech-

niques such as admission control, we will leverage more advanced

network hardware with support for remote direct memory access

(RDMA), enabling fast epoch switching.

Inspired by recent developments in transaction processing on a

single many-core machine [32, 34], we would also like to explore

whether the benefits of ECC demonstrated in a distributed message

passing system can be realized in shared memory as well.

9 CONCLUSION
This paper addresses the problem of supporting high-throughput

multi-partition read-only and write-only transactions, a.k.a multi-
put and multi-get. We propose an ECC mechanism for these trans-

actions, which guarantees serializability. ECC avoids read-write

conflicts among transactions by partitioning transaction execu-

tion into disjoint read and write epochs, and mitigates write-write

conflicts by storing multiple versions of key-value pairs. Thus, con-

current writes can be processed in parallel with low-overhead, even

when their write sets overlap. Using ECC as the central building

block, we describe a distributed protocol for serializable read-only

and write-only transactions, which requires amortized one round

trip to commit a transaction in the absence of failures irrespective

of contention. We implement the protocol in a key-value storage

system called ALOHA-KV, and show experimentally that it can pro-

cess around 233 million operations per second on 15 servers when

transactions contain thousands of operations. Compared to RAMP,

our system achieves much higher throughput for large transactions,

despite guaranteeing stronger transaction isolation.
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