ScootR: Scaling R Dataframes on Dataflow Systems

Andreas Kunft1 Lukas Stadler2 Daniele Bonetta2 Cosmin Basca2 Jens Meiners1
Sebastian Breß1 Tilmann Rabl1 Juan Fumero3 Volker Markl2

Technische Universität Berlin1 Oracle Labs2 University of Manchester3
R gained increased traction

• Dynamically typed, open-source language

• Rich support for analytics & statistics
R gained increased traction

- Dynamically typed, open-source language
- Rich support for analytics & statistics

But

- Standalone R is not well suited for out-of-core data loads
Analytics pipelines often work on large amounts of raw data

- Dataflow engines (DF), e.g., Apache Flink and Spark, scale-out
- Provide rich support for user-defined functions (UDFs)
Analytics pipelines often work on large amounts of raw data

- Dataflow engines (DF), e.g., Apache Flink and Spark, scale-out
- Provide rich support for user-defined functions (UDFs)

But

- R users are often unfamiliar with DF APIs and concepts
Combine the usability of R with the scalability of dataflow engines

- Goals
- From functions calls to an operator graph
- Approaches to execute R UDFs
- Our Approach: ScootR
- Evaluation
GOALS

1. Provide data.frame API with *natural* feeling

 • `df <- select(df, count = flights, distance)`
 • `df$km <- df$miles * 1.6`
 • `df <- apply(df, func)`
GOALS

1. Provide data.frame API with *natural* feeling

 - \(\text{df} \leftarrow \text{select(df, count = flights, distance)} \)
 - \(\text{df}\$km \leftarrow \text{df}\$miles \times 1.6 \)
 - \(\text{df} \leftarrow \text{apply(df, func)} \)

2. Achieve comparable performance to native dataflow API
From function calls to an operator graph
MAPPING DATA TYPES

• R `data.frame(T_1, T_2, ..., T_N)` as Flink `DataSet<Tuple_N<T_1, T_2, ..., T_N>>`

• E.g., `data.frame(integer, character)` as `DataSet<Tuple2<Integer, String>>`
MAPPING R FUNCTIONS TO OPERATORS

• Functions on data.frames *lazily* build an operator graph
MAPPING R FUNCTIONS TO OPERATORS

• Functions on data.frames *lazily* build an operator graph

1. Functions w/o UDFs are handled before execution, e.g., a `select` function is mapped to a `project` operator

```
select(df$id, df$arrival) to ds.project(1, 3)
```
MAPPING R FUNCTIONS TO OPERATORS

• Functions on `data.frames` *lazily* build an operator graph

1. Functions w/o UDFs are handled before execution
2. Functions w/ UDFs call **R functions** during execution
Approaches to execute R UDFs
INTER PROCESS COMMUNICATION (IPC)
INTER PROCESS COMMUNICATION (IPC)

1. Communication + Serialization (R <> Java)

2. JVM and R compete for memory

```r
filter <- function(df) {
  df$language == 'english'
}
```
SOURCE-TO-SOURCE TRANSLATION (STS)

• Translate restricted set of functions to native dataflow API

• Constant translation overhead, but native execution performance
SOURCE-TO-SOURCE TRANSLATION (STS)

• E.g., STS translation in SparkR to Spark’s Scala Dataframe API:

```r
df <- filter(df,
             df$language == 'english')

val df = df.filter($"language" == "english")

df$km <- df$miles * 1.6

val df = df.withColumn("km", $"miles" * 1.6)
```
Inter Process Communication

+ Execute arbitrary R code
- Data serialization
- Data exchange
- Java and R process compete for memory

Source-to-source translation

+ Native performance
- Restricted to a language subset or requires to build full-fledged compiler
A common runtime for R and Java
BACKGROUND: TRUFFLE/GRAAL
BACKGROUND: TRUFFLE/GRAAL
BACKGROUND: TRUFFLE/GRAAL
SCOOTR: FASTR + FLINK
SCOOTR OVERVIEW

```r
flink.init(SERVER, PORT)
flink.parallelism(DOP)

df <- flink.readdf(SOURCE,
   list("id", "body", ...),
   list(character, character, ...)
 )

words <- function(df) {
  len <- length(strsplit(df$body, " ")[[1]])
  list(df$id, df$body, len)
}

df <- flink.apply(df, words)

flink.writeAsText(df, SINK)
flink.execute()
```
flink.init(SERVER, PORT)
flink.parallelism(DOP)

df <- flink.readdf(SOURCE,
 list("id", "body", ...),
 list(character, character, ...))

words <- function(df) {
 len <- length(strsplit(df$body, " ")[[1]])
 list(dfid, dfbody, len)
}

df <- flink.apply(df, words)

flink.writeAsText(df, SINK)
flink.execute()
Efficient data access in R UDFs
function(df) {
 len <- length(strsplit(df$body, " ")[[1]])
 list(dfid, dfbody, len)
}
function(df) {
 len <- length(strsplit(df$body, " ")[[1]])
 list(dfid, dfbody, len)
}

function(tuple) {
 len <- length(strsplit(tuple[[2]], " ")[[1]])
 list(tuple[[1]], tuple[[2]], len)
}

1) Dataframe *proxy* keeps track of **columns** and provides efficient access
function(df) {
 len <- length(strsplit(df$body, " ")[1])
 list(dfid, dfbody, len)
}

function(tuple) {
 len <- length(strsplit(tuple[[2]], " ")[1])
 .flink.tuple(tuple[[1]], tuple[[2]], len)
}

1 Dataframe proxy keeps track of columns and provides efficient access

2 Rewrite to directly instantiate a Flink tuple instead of an R list
IMPACT OF DIRECT TYPE ACCESS

• From `list(...)` to `flink.tuple(...)`

• Avoids additional pass over R list to create Flink tuple

• Up to 1.75x performance improvement

Purple is function execution, pink (hatched) conversion from list to tuple
Evaluation
APPLY FUNCTION MICROBENCHMARK

 CSV, 19 columns, **9.5GB**

- UDF: `df$km <- df$miles * 1.6`

![Diagram showing performance comparison between Flink, Spark, ScootR, and SparkR (STS) with DOP (Degree of Parallelism) as the x-axis and time in seconds as the y-axis. The graph illustrates the relative performance of these tools across different parallelization levels.]
APPLY FUNCTION MICROBENCHMARK

 CSV, 19 columns, 9.5GB

- UDF: dfkm <- dfmiles * 1.6

ScootR and SparkR (STS) achieve near native performance
APPLY FUNCTION MICROBENCHMARK

 CSV, 19 columns, **9.5GB**

- UDF: \(\text{df} _km < - \text{df} _miles \times 1.6 \)

ScootR and **SparkR (STS)** achieve near native performance

Both heavily outperform **gnu R** and **fastR**
APPLY FUNCTION MICROBENCHMARK: SCALABILITY
MIXED PIPELINE W/ PREPROCESSING AND ML

Pipeline:
- (Distributed) preprocessing of the dataset
- Data is collected locally and an generalized linear model is trained

Majority of the time is spent in preprocessing

ScootR is up to 11x faster than gnu R and fastR
RECAP

• ScootR provides a data.frame API in R for Apache Flink

• R and Flink run within the same runtime
 • Avoids serialization and data exchange
 • Avoids type conversion

> Achieves near native performance for a rich set of operators