DCUDA: Dynamic GPU Scheduling with Live Migration Support

Fan Guo1, Yongkun Li1, John C.S. Lui2, Yinlong Xu1

1University of Science and Technology of China
2The Chinese University of Hong Kong
Outline

1 Background & Problems
2 DCUDA Design
3 Evaluation
4 Conclusion
GPUs are underloaded without sharing

- A server may contain multiple GPUs
- Each GPU contains thousands of cores

GPU sharing allows multiple apps to run concurrently on one GPU

GPU scheduling is necessary

Load balance GPU utilization
Current Scheduling Schemes

- Current schemes are “static”
 - Round-robin, prediction-based, least-loaded
 - They only make the assignment of applications before running them
- State-of-the-art: Least-loaded scheduling
 - Assign new app to the GPU with the least load
Limitations of Static Scheduling

- Load imbalance (least-loaded scheduling)

The fraction of time in which at least one GPU is overloaded and some other GPU is underloaded accounts for up to 41.7% (overloaded: demand > GPU cores)
Limitations of Static Scheduling

Why does static scheduling result in load imbalance?

- Assign before running
 - Hard to get exact resource demand
 - The assignment is not optimal
- No migration support
 - No way to adjust online
Limitations of Static Scheduling

- Fairness issue caused by contention
 - Applications with low resource demand may be blocked by those with high resource demand
 - May also exist even with load-balancing schemes

- Energy inefficiency

Compacting multiple small jobs on one GPU saves energy
Our Goal

- Our goal is to design a scheduling scheme so as to achieve better
 - Load balance, energy efficiency, fairness
- Key idea: DCUDA

Dynamic scheduling
(Schedule after running, fairness and energy awareness)

Online migration
(running applications, not executing kernels)
Outline

1. Background & Problems
2. DCUDA Design
3. Evaluation
4. Conclusion
DCUDA is implemented based on the API forwarding framework

Key three modules at the backend

- Monitor
 - GPU utilization
 - App’s resource demand
- Scheduler
 - Load balance
 - Energy efficiency
 - Fairness
- Migrator
 - Migration of running app
Resource demand of each application

- GPU cores and GPU memory
- Key challenge: lightweight requirement

Demand on GPU cores

- Existing tool (nvprof): large overhead (replay API calls)

Timer function

(Track info. only from parameters of intercepted API: #blk, #threads)

Optimization

- Estimate only at the first time when the kernel func is called
- Use the recorded info. next time
- Rationale: GPU applications are iteration-based
The Monitor

Demand on GPU memory
- Easy to know allocated mem, but not all mem. are used

How to detect actual usage?
- Pointer check with cuPointerGetAttribute() + sampling
- False negative: miss identification of used mem
 - On-demand paging (with unified mem support)

Estimation of GPU utilization
- Periodically scan the resource demand of applications
- Aggregate them together
A multi-stage and multi-object scheduling policy

First priority: Load balance

Case 1: (Slightly) overloaded GPU
Must avoid low-demand tasks being blocked

Case 2: Underloaded GPUs: Waste energy
The Scheduler

Load balance
- Which GPUs: check each GPU pair
 - Feasible candidates: An overloaded + an underloaded
- Which applications to migrate
 - Minimize migration frequency + avoid ping-pong effect
 - Greedy: Migrate the most heavyweight and feasible applications

Energy awareness
- Compact lightweight apps to fewer GPUs to save energy

Fairness awareness: Grouping + time slicing

Tradeoff
Utilization vs fairness

Utilization
Mixed packing

Fairness
Priority-based scheme
The Migrator

- Clone runtime
 - Largest overhead: initializing libraries (>80%)
 - Handle pooling: maintain a pool of libraries’ handles for each GPU

- Migrate memory data
 - Leverage unified memory: Able to immediately run task without migrating data
 - Transparently support
 - Intercept API and replace
 - Pipeline
 - Prefetch & on-demand paging
Resume computing tasks

- Two states of tasks: running and waiting
 - Only migrate waiting tasks
- Sync to wait for the completion of all running tasks
- Redirect waiting tasks to target GPUs
 - Order preserving
 - FIFO queue
Outline

1. Background & Problems
2. DCUDA Design
3. Evaluation
4. Conclusion
Experiment Setting

■ Testbed
 ✓ Prototype implemented based on CUDA toolkit 8.0
 ✓ Four NVIDIA 1080Ti GPUs, each has 3584 cores and 12GB memory

■ Workload
 ✓ 20 benchmark programs which represent a majority of GPU applications (HPC, DM, ML, Graph Alg, DL)
 ✓ Focus on randomly selected 50 sequences, each combines the 20 programs with a fixed interval

■ Baseline algorithm
 ✓ Least-loaded: most efficient static scheduling scheme
Load Balance

- **Load states of GPU**
 - 0%-50% utilization, 50%-100% utilization, and overloaded (demand > GPU cores)

- **Overloaded time** of each GPU
 - Least-loaded: 14.3% - 51.4%
 - **DCUDA**: within 6%
- Improves average GPU utilization by 14.6%
- Reduce the overloaded time by 78.3% on average (over the 50 sequences/workloads)
- Normalize the time to single execution
- DCUDA reduces the average execution time by up to 42.1%
Impact of Different Loads

- Largest performance improvement in medium load case
- Largest energy saving in light load case
Outline

1. Background & Problems
2. DCUDA Design
3. Evaluation
4. Conclusion
Conclusion & Future Work

- Static GPU scheduling algorithm in assigning applications leads to load imbalance
 - Low GPU utilization & high energy consumption

- We develop DCUDA, a dynamic scheduling alg
 - Monitors resource demand and util. w/ low overhead
 - Supports migration of running applications
 - Transparently supports all CUDA applications

- Limitation: DCUDA only considers scheduling within a server and the resource of GPU cores
Q&A

Yongkun Li
ykli@ustc.edu.cn
http://staff.ustc.edu.cn/~ykli