NEPTUNE
Scheduling Suspensible Tasks
for Unified Stream/Batch Applications

Panagiotis Garefalakis
Imperial College London
pgaref@imperial.ac.uk

Konstantinos Karanasos
Microsoft
kokarana@microsoft.com

Peter Pietzuch
Imperial College London
prp@imperial.ac.uk

SoCC, Santa Cruz, California, November 2019
Unified application example

Inference Job
- Real-time data
 - Iteration
 - Batch
- Low-latency responses

Training Job
- Historical data
 - Stream
- Trained Model
 - Batch
 - Application

Panagiotis Garefalakis - Imperial College London
Evolution of analytics frameworks

- **Batch frameworks**
 - 2010: Hadoop, Hive, Storm

- **Stream frameworks**
 - 2010: Hadoop, Hive, Storm

- **Unified stream/batch frameworks**
 - 2014: Apache Apex, Beam

- **Frameworks with hybrid stream/batch applications**
 - 2018: Apache Spark, Structured Streaming
Requirements

> **Latency**: Execute inference job with minimum delay
> **Throughput**: Batch jobs should not be compromised
> **Efficiency**: Achieve high cluster resource utilization

Challenge: schedule stream/batch jobs to satisfy their diverse requirements
Stream/Batch application scheduling

Inference (stream) Job

Training (batch) Job

Driver

App Context

DAG Scheduler

submit

Application Code

run job

Stage1

Stage2

Stage1

Stage2

4x

3x

2x

2x

3T

T

Panagiotis Garefalakis - Imperial College London
Stream/Batch application scheduling

Inference (stream) Job

Training (batch) Job

> Static allocation: dedicate resources to each job

Resources can not be shared across jobs
Stream/Batch application scheduling

> **FIFO**: first job runs to completion

Long batch jobs increase stream job latency
Stream/Batch application scheduling

Inference (stream) Job

Training (batch) Job

> **FAIR**: weight share resources across jobs

Better packing with non-optimal latency
Stream/Batch application scheduling

> **KILL**: avoid queueing by preempting batch tasks

Better latency at the expense of extra work
Stream/Batch application scheduling

Inference (stream) Job

Training (batch) Job

> **NEPTUNE**: minimize queueing and wasted work!
Challenges

> How to *minimize queuing* for latency-sensitive jobs and wasted work?

> How to *natively* support stream/batch applications?

> How to *satisfy* different stream/batch application requirements and high-level objectives?
How to minimize queuing for latency-sensitive jobs and wasted work?

- Support suspendable tasks

How to natively support stream/batch applications?

- Unified execution framework on top of Structured Streaming

How to satisfy different stream/batch application requirements and high-level objectives?

- Introduce pluggable scheduling policies
Typical tasks

> **Tasks:** apply a function to a partition of data

> Subroutines that run in executor to completion

> **Preemption problem:**
 > Loss of progress (kill)
 > Unpredictable preemption times (checkpointing)
Suspendable tasks

> **Idea:** use coroutines

> Separate stacks to store task state

> **Yield** points handing over control to the executor

> **Cooperative preemption:**

> Suspend and resume in *milliseconds*

> Work-preserving

> Transparent to the user

https://github.com/storm-enroute/coroutines
Execution framework

> **Problem:** not just assign but also suspend and resume

> **Idea:** centralized scheduler with pluggable policies
Idea: policies trigger task suspension and resumption

- Guarantee that stream tasks bypass batch tasks
- Satisfy higher-level objectives i.e. balance cluster load
- Avoid starvation by suspending up to a number of times

Load-balancing (LB): takes into account executors’ memory conditions and equalize the number of tasks per node

Locality- and memory aware (LMA): respect task locality preferences in addition to load-balancing
Implementation

> Built as an extension to 2.4.0 (https://github.com/lsds/Neptune)

> Ported all ResultTask, ShuffleMapTask functionality across programming interfaces to coroutines

> Extended Spark’s DAG Scheduler to allow job stages with different requirements (priorities)

> Added additional Executor performance metrics as part of the heartbeat mechanism
Cluster
– 75 nodes with 4 cores and 32 GB of memory each

Workloads
– **LDA**: ML training/inference application uncovering hidden topics from a group of documents
– **Yahoo Streaming Benchmark**: ad-analytics on a stream of ad impressions
– **TPC-H** decision support benchmark
Benefit of NEPTUNE in stream latency

NEPTUNE achieves latencies comparable to the ideal for the latency-sensitive jobs

LDA: training (batch) job using all available resources, with a latency-sensitive inference (stream) using 15% of resources
Impact of resource demands in performance

Efficiently share resources with low impact on throughput
NEPTUNE supports complex unified applications with diverse job requirements!

- Suspendable tasks using coroutines
- Pluggable scheduling policies
- Continuous unified analytics

https://github.com/lsds/Neptune

Thank you! Questions?

Panagiotis Garefalakis
pgaref@imperial.ac.uk